Step of Proof: decidable__quotient_equal
12,41
postcript
pdf
Inference at
*
1
1
1
2
I
of proof for Lemma
decidable
quotient
equal
:
1.
T
: Type
2.
E
:
T
T
3. EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
4.
f
:
T
T
5.
x
,
y
:
T
. (
(
x
f
y
))
E
(
x
,
y
)
6.
f
(
x
,
y
:
T
//
E
(
x
,
y
))
(
x
,
y
:
T
//
E
(
x
,
y
))
f
:(
x
,
y
:
T
//
E
(
x
,
y
))
(
x
,
y
:
T
//
E
(
x
,
y
))
. (
u
,
v
:(
x
,
y
:
T
//
E
(
x
,
y
)). (
(
u
f
v
))
(
u
=
v
))
latex
by ((With
f
(D 0))
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
u
,
v
:(
x
,
y
:
T
//
E
(
x
,
y
)). (
(
u
f
v
))
(
u
=
v
)
C
.
Definitions
P
Q
,
P
&
Q
,
x
,
y
.
t
(
x
;
y
)
,
P
Q
,
x
:
A
.
B
(
x
)
,
t
T
,
x
f
y
,
P
Q
,
x
:
A
.
B
(
x
)
,
x
(
s1
,
s2
)
,
Lemmas
assert
wf
,
iff
wf
,
quotient
wf
origin